Home
Class 11
MATHS
lim(x->0)[e^sinx-1]/x...

`lim_(x->0)[e^sinx-1]/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(e^(sinx)-1)/x=

Evaluate: lim_(x->0)(e^(sinx)-(1+sinx))/({tan^(-1)(sinx)}^2)

lim_(x->0) (2e^sinx-e^(-sinx)-1)/(x^2+2x)

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is 0 (b) -1 (c) 1 (d) 2

lim_(x to 0)(e^(sinx)-1)/x=.......

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x