Home
Class 10
MATHS
Find x if 1/2log(10)(11+4sqrt(7))=log(10...

Find x if `1/2log_(10)(11+4sqrt(7))=log_(10)(2+x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x if log_(1//sqrt(2)) (1//sqrt(8)) = log_(2)(4^(x) +1). Log(4^(x+1) +4) ,

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

x^((log_(10)x+7)/(4))=10^(log_(10)x+1)

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

(1)/(2)log_(10)x+3log_(10)sqrt(2+x)=log_(10)sqrt(x(x+2))+2

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :