Home
Class 12
MATHS
" 6."|[a,b,c],[a^(2),b^(2),c^(2)],[a^(3)...

" 6."|[a,b,c],[a^(2),b^(2),c^(2)],[a^(3),b^(3),c^(3)]|=abc(a-b)(b-c)(c-a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-b)(b-c)(c-a)

Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

Prove the following identities : |{:(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3)):}|=abc(a-b)(b-c)(c-a) .

Prove that the following. [[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]] = abc(a-b)(b-c)(c-a)

Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

If a+b+c=6,a^(2)+b^(2)+c^(2)=14sa^(3)+b^(3)+c^(3)=36, find abc.