Home
Class 11
MATHS
lim(x -> I^-) ((e^{x} - {x} -1) / {x}^2)...

`lim_(x -> I^-) ((e^{x} - {x} -1) / {x}^2)` equals, where {:} is fractional part function and I is an integer, to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim _(xto 1 ^(-)) (e ^({x}) - {x} -1)/( {x}^(2)) equal, where {.} is fractional part function and I is aan integer, to :

lim _(xto 1 ^(-)) (e ^({x}) - {x} -1)/( {x}^(2)) equal, where {.} is fractional part function and I is aan integer, to :

If x in[2,3) ,then {x} equals, where {.} denotes fractional part function.

lim_(x rarr0^(-)){x} is equal to (where { . } is fractional part function):

lim_(x rarr[a])(e^(x)-{x}-1)/({x}^(2)) Where {x} denotes the fractional part of x and [x] denotes the integral part of a.

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

[lim_(x rarr5)(|x^(2)-9x+20|)/({x}({x}-1))" is (where "{.}" denotes "],[" fractional part function) "]

The value of lim_(x rarr2){(x)/(2)}, where {.} represents fractional part function,is

lim_(x rarr2^(+))((2{x}-4)/([x]-3)) is equal to,where {.} and [.] represents fractional part of x and greatest integer function

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function