Home
Class 11
MATHS
let a=lim(x->1)(x/lnx-1/(xlnx)) , b=lim(...

let `a=lim_(x->1)(x/lnx-1/(xlnx)) , b=lim_(x->0)((x^3-16x)/(4x+x^2)) , c=lim_(x->0) ln(1+sinx)/x` and `d=lim_(x->-1) (x+1)^3/(3[sin(x+1)-(x+1)])` then the matrix `[[a,b],[c,d]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (x^3-3x+1)/(x-1)

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 1) ((ln(1+sinx))/x) and c = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)]) then [[a,b],[c,d]] is

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 0) ((ln(1+sinx))/x) & d = lim _(x rarr -1) ((x+1)^(3))/(3([sin (x+1) - (x+1)])) Then [[a,b],[c,d]] is

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 1) ((ln(1+sinx))/x) & d = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)]) Then [[a,b],[c,d]] is

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 1) ((ln(1+sinx))/x) & d = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)]) Then [[a,b],[c,d]] is

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

lim_(x->0) (x^2-3x+1)/(x-1)

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

lim_(x to 0) (x^3 sin(1/x))/sinx