Home
Class 11
MATHS
Consider the function f(x)={(max(x ,1/x)...

Consider the function `f(x)={(max(x ,1/x))/(min(x ,1/x)), if x !=0 and 1, if x=0,` then `lim_(x->0){f(x)}+lim_(x->1){f(x)}, lim_(x->1) [f(x)]=` `

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f (x)={{:(max (x, (1)/(x))",", If x ne0),(min (x, (1)/(x)),),(1"," , if x=0):}, then lim _(xto 0^(-)) {f(x)} + lim _(xto 1 ^(-)) {f (x)}+ lim _(x to 1 ^(-)) [f (x)]= (where {.} denotes fraction part function and [.] denotes greatest integer function)

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

For the function f(x)= {(x-1,x lt 0),(1/4,x=0) ,(x^2 , xgt0):} then lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are

Consider the function : f (x) ={(x-2,x 0):} . To find lim_(x to 0) f(x) .

Consider the function : f (x) ={(x+2, x ne 1),(0,x=1):} . To find lim_(x to 1) f(x) .

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Consider the function f (x) = 1/x^2 for x > 0. To find lim_(x to 0) f(x) .

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .