Home
Class 11
MATHS
Let alpha=lim(n->oo)((1^3-1^2)+(2^3-2^2)...

Let `alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4),` then `alpha` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha = lim _(x to oo) ((1 ^(3) -1 ^(2))+ (2^(3)-2 ^(2)) +…+ (n ^(3 ) n ^(2))/(pi^(4)), then alpha is equal is:

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_ (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to