Home
Class 11
MATHS
If f(x) be a cubic polynomial and lim(x-...

If `f(x)` be a cubic polynomial and `lim_(x->0)(sin^2x)/(f(x))=1/3` then `f(1)` can not be equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial satisfying f(x)f(1//x)=f(x)+f(1//x) and f(3)=28 , then f(4) is equal to

If f(x) is a polynomial satisfying f(x)f(1//x)=f(x) +f(1//x) and f(3)=28, then f(4) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial of degree four having extreme values at x = 1 and x = 2. If lim_(x to 0) [1+(f(x))/(x^(2))]=3 , then f(2) is equal to :

Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. If lim_(x to 0)(1+(f(x))/(x^(2)))=3, then f(2) is equal to