Home
Class 11
MATHS
Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x...

Let `f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2` If `lim_(x->2) [f(x)]` existsn the possible values a can take is/are (where [.] represents the grestest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={|x-2|+a^2-6a+9, x = 2 If lim_(x->2) [f(x)] exists the possible values a can take is/are (where [.] represents the grestest integer function)

If lim_(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the values (where [.] denotes the greatest integer function)

If lim_(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the values (where [.] denotes the greatest integer function)

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Let f: [-3, 3] rarr R where f(x)=x^(2) + sin x + [(x^(2)+2)/(a)] be an odd function then the value of a is ( where [.] represents greatest integer function)

f:(2,3)->(0,1) defined by f(x)=x-[x] ,where [dot] represents the greatest integer function.

If f(x)= [x ]^(2)+2 [x+1] -10 then complete solution of f(x)=0 where, [. ]represents the greatest integer function is