Home
Class 12
MATHS
Let F(a)=[(cos a,-sin a,0),(sin a, cos a...

Let `F(a)=[(cos a,-sin a,0),(sin a, cos a, 0),(0,0,1)] and G(B)=[(cos B,0,sin B),(0,1,0),(-sin B,0,cos B)] " Show that " [F(a).G(B)]^(-1)=G(-B).F(-a)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x) = [(cos x, - sin x, 0),(sin x, cos x, 0),(0,0,1)] and G(y) = [(cos y, 0, sin y),(0,1,0),(-sin y, 0, cos y)] then [F(x) G(y)]^(-1) is equal to a) F (-x) G(-y) b) G(-y) F(-x) c) F(x^(-1))G(y^(-1)) d) G(y^(-1))F(x^(-1))

If F(theta) = [(cos theta, - sin theta, 0),(sintheta, costheta, 0),(0,0,1)] and G(alpha) = [(cos alpha, 0, sin alpha),(0,1,0),(-sinalpha, 0, cos alpha)] , show that [F(theta) G(alpha)]^-1 = G ( - alpha ) F ( - theta)

Let F (x) = [{:(cos x , -sin x , 0),(sin x , cos x , 0),(0 , 0, 1):}] , then

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)