Home
Class 12
MATHS
y=cos^(-1)(2x)/(1+x^(2)),-1<x<1," then "...

y=cos^(-1)(2x)/(1+x^(2)),-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= cos^(-1)((2x)/(1+x^(2))) , then (dy)/(dx) is -

If y = "cos^(-1)((2x)/(1 + x^2)) , then (dy)/(dx) is

Find the derivative of y=cos^(-1)((1-x^2)/(1+x^2)) , 0

tan[1/2sin^(-1)((2x)/(1+x^(2)))-1/2cos^(-1)((1-y^(2))/(1+y^(2)))]=

Find quad quad (dy)/(dx) in the following: y=cos^(-1)((1-x^(2))/(1+x^(2))),0

tan[1/2Sin^(-1)((2x)/(1+x^(2)))-1/2Cos^(-1)((1-y^(2))/(1+y^(2)))]=

tan{(1/2)sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))} .

If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) = ?

Find dy/dx in the following: y = cos^-1((1-x^2)/(1+x^2)), 0 < x <1

If y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," then "(1+x^(2n))y_(1)=