Home
Class 12
MATHS
If y=tan^(-1)(((sqrt(1+x^2)-sqrt(1-x^2))...

If `y=tan^(-1)(((sqrt(1+x^2)-sqrt(1-x^2))/((sqrt(1+x^2)+sqrt(1-x^2)))` find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.