Home
Class 11
PHYSICS
What is the value of linear velocity, if...

What is the value of linear velocity, if `vec(omega) = 3hat(i)-4 hat(j) + hat(k)` and `vec(r) = 5hat(i)-6hat(j)+6hat(k)`

A

`6hat(i)+2hat(j)-3hat(k)`

B

`-18 hat(i)-13hat(j)+2hat(k)`

C

`4hat(i)-13hat(j)+6hat(k)`

D

`6hat(i)-2hat(j)+8hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the linear velocity \( \vec{v} \) given the angular velocity \( \vec{\omega} \) and the position vector \( \vec{r} \), we can use the relationship: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Write down the vectors Given: - \( \vec{\omega} = 3 \hat{i} - 4 \hat{j} + 1 \hat{k} \) - \( \vec{r} = 5 \hat{i} - 6 \hat{j} + 6 \hat{k} \) ### Step 2: Set up the cross product The cross product \( \vec{v} = \vec{\omega} \times \vec{r} \) can be calculated using the determinant of a matrix: \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula for a 3x3 matrix, we can expand it as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} \] ### Step 4: Calculate the minors Now, we calculate each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} = (-4)(6) - (1)(-6) = -24 + 6 = -18 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} = (3)(6) - (1)(5) = 18 - 5 = 13 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} = (3)(-6) - (-4)(5) = -18 + 20 = 2 \] ### Step 5: Combine the results Now we can substitute these values back into our expression for \( \vec{v} \): \[ \vec{v} = -18 \hat{i} - 13 \hat{j} + 2 \hat{k} \] ### Final Result Thus, the linear velocity \( \vec{v} \) is: \[ \vec{v} = -18 \hat{i} - 13 \hat{j} + 2 \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • MOTION IN ONE DIMENSION

    ERRORLESS |Exercise Motion In One Dimension|24 Videos
  • NEWTONS LAWS OF MOTION

    ERRORLESS |Exercise Self Evaluation Test|16 Videos

Similar Questions

Explore conceptually related problems

What is the value of linear velocity. If vec(omega)=3hat(i)-4hat(j)+hat(k)and vec(r)=5hat(i)-6hat(j)+6hat(k) ?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k) and radius vector (vec(r )) = hat(i) + hat(j) + vec(k) , then its velocity is :

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on vec(b)=2hat(i)+6hat(j)+3hat(k)

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

ERRORLESS -MOTION IN TWO DIMENSION-Exercise
  1. An aeroplane is flying with a uniform speed of 100 m/s along a circula...

    Text Solution

    |

  2. A body moves with constant angular velocity on a circle. Magnitude of...

    Text Solution

    |

  3. What is the value of linear velocity, if vec(omega) = 3hat(i)-4 hat(j)...

    Text Solution

    |

  4. A stone is tied to one end of a string 50 cm long is whirled in a hori...

    Text Solution

    |

  5. A 100 kg car is moving with a maximum velocity of 9 m//s across a circ...

    Text Solution

    |

  6. Find the maximum speed at which a car can turn round a curve of 30 m r...

    Text Solution

    |

  7. The angular velocity of a wheel is 70 rad//sec . If the radius of the ...

    Text Solution

    |

  8. Find the angle through which a cyclist bends when he covers a circular...

    Text Solution

    |

  9. A particle of mass M is moving in a horizontal circle of radius R wit...

    Text Solution

    |

  10. A ball of mass 0.1 Kg. is whirled in a horizontal circle of radius 1 m...

    Text Solution

    |

  11. A cyclist riding at a speed of 14 sqrt(3 ) ms^(-1) takes a turn around...

    Text Solution

    |

  12. If a cycle wheel of radius 4 m completes one revolution in two seconds...

    Text Solution

    |

  13. A bob of mass 10 kg is attached to wire 0.3 m long. Its breaking stre...

    Text Solution

    |

  14. In uniform circular motion, the velocity vector and acceleration vecto...

    Text Solution

    |

  15. A point mass m is suspended from a light thread of length l, fixed at ...

    Text Solution

    |

  16. If a cyclist moving with a speed of 4.9 m//s on a level road can take ...

    Text Solution

    |

  17. A car moves on a circular road. It describes equal angles about the c...

    Text Solution

    |

  18. A scooter is going round a circular road of radius 100 m at a speed of...

    Text Solution

    |

  19. A particle of mass M moves with constant speed along a circular path o...

    Text Solution

    |

  20. In an atom for the electron to revolve around the nucleus, the necessa...

    Text Solution

    |