Home
Class 11
MATHS
If the lim(x->0) 1/x^3 ( 1/sqrt(1+x) - (...

If the `lim_(x->0) 1/x^3 ( 1/sqrt(1+x) - (1+ax)/(1+bx))` exists and has the value to l, then find the value of `1/a - 2/l + 3/b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lim_(x rarr0)(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists and has the value equal to l, then find the value of (1)/(a)-(2)/(l)+(3)/(b)

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then find the value of 1/a - 2/l - 3/b

Consider the limit lim _(x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax))/((1+bx))) exists, finite and has the value equal to l (where a,b are real constants), then: a+b=

Consider the limit lim _(x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax))/((1+bx))) exists, finite and has the value equal to l (where a,b are real constants), then : |(b)/(a)|=

Consider the limit lim _(x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax))/((1+bx))) exists, finite and has the value equal to l (where a,b are real constants), then : a=

If lim_(x rarr0)(1-cos(1-cos(1-cos x)))/(x^(a)) exists and has a non-zero value,find the value of a.

If lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2) exists and is equal to l, then b+d+l is equal to