Home
Class 12
MATHS
For any three vectors veca, vecb, vecc t...

For any three vectors `veca, vecb, vecc` the value of `[(veca+vecb,vecb+vecc,vecc+veca)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors veca,vecb,vecc show that veca-vecb,vecb-vecc,vecc-veca are coplanar.

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

For any three vectors veca,vecb,vecc show that [(veca-vecb) (vecc-veca) (vecb-vecc)] = 0

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .