Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3+2x^2-3x-1=0` then `alpha^(- 2)+beta^(- 2)+gamma^(- 2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of x^(3) + 2x^(2) - 3x - 1 =0, then a^(-2)- beta^(-2) + gamma^(-2) =

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha , beta , gamma are the roots of 2x^3 -2x -1=0 the sum ( alpha beta)^2 =

If alpha,beta,gamma are the roots of x^(3)-3x^(2)+4x-7=0, then (alpha+2)(beta+2)(gamma+2)=

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =