Home
Class 11
MATHS
[int(1/e)^(e)|log x|dx=[ (A) e^(-1)-1, (...

[int_(1/e)^(e)|log x|dx=[ (A) e^(-1)-1, (B) 2(1-1/e), (C) 1-1/e, (D) None of thes ]]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

The value of int_(-1)^(1)e^(|x|)dxis : (a) 2(e+1)^(-1), (b) 2(e-1) (c) 2(e-2), (d) 3(e-1)

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

If I=int_((1)/(e))^(e)|log x|(dx)/(x^(2)), then I equals (A) 2 (B) (2)/(e)(C)2(1-(1)/(e))(D)0

[int_(0)^( pi/2)cos x*e^(sin x)dx=.........],[[" (A) "e+1," (B) "e-1," (C) "e," (D) "-e]]

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

Integration of 1/(1+((log)_e x)^2) with respect to (log)_e x is (tan^(-1)((log)_e x)/x)+C (b) tan^(-1)((log)_e x)+C (c) (tan^(-1)x)/x+C (d) none of these