Home
Class 12
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equation `2x^3 - 5x^2 + 3x - 1 = 0,` then `1/(alpha beta)+1/(betagamma)+1/(gammaalpha)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta ,gamma are the roots of 2x^(3) - 5x^(2) + 3x - 1 = 0 then (1)/(alpha beta ) + (1)/(beta gamma) + (1)/(gamma alpha) =

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha,beta,gamma are the roots of the equation x^(3)+4x+1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .