Home
Class 10
MATHS
Find the remainder when 1^2013+2^2013+3^...

Find the remainder when `1^2013+2^2013+3^2013+...+2012^2013` is divisible by 2013

Text Solution

Verified by Experts

`1^2013+2^2013+3^2013+...+2012^2013`
`=(1^2013+2012^2013)+(2^2013+2011^2013)+...(1006^2013+1007^2013)`
So, these terms are of the form `a^n+b^n` and they will be divided by `a+b` as `n = 2013` and it is odd.
`:.` Remainder of the given expression when divided by `2013` is `0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the remainder when 2^(2013) in divided by 17.

Find the remainder when 2^(2013) in divided by 17.

Real root of the equation (x-1)^(2013)+(x-2)^(2013)+(x-3)^(2013)+.......+(x-2013)^(2013)=0 digits is :

Real root of the equation (x-1)^(2013) +(x-2)^ (2013) +(x-3)^ (2013)+……….+(x-2013)^(2013) =0 is a four digit number. Then the sum of the digits is :

Real root of the equation (x-1)^(2013) +(x-2)^ (2013) +(x-3)^ (2013)+……….+(x-2013)^(2013) =0 is a four digit number. Then the sum of the digits is :

Find the percentage increase in sales from 2012 to 2013

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , Then x^2013+y^2013+z^2013-9/(x^2013+y^2013+z^2013) is equal to