Home
Class 11
MATHS
Let sum(r=1)^nsin^(- 1)alphar=(npi)/2 f...

Let `sum_(r=1)^nsin^(- 1)alpha_r=(npi)/2` for any `n in N and p=prod_(r=1)^n (alpha_r)^r`.If `f(x)={(x^(1/3)-(3-2x)^(1/4))/(x^2-x) , x !=p and k, x=p` is continuos at `x=p` ,then find the value of `6(k+p)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(k)cos^(-1)beta_(r)=(k pi)/(2) for any k>=1 and A=sum_(r=1)^(k)(beta_(r))^(r) then lim_(x rarr A)((1+x)^((1)/(3))-(1-2x)^((1)/(4)))/(x+x^(2)) is equal to

If sum_(r = 1)^(k) cos^(-1) beta r = (kpi)/(2), "for any k" ge 1 and A = sum_(r = 1)^(k)(beta r)^(r),"then" lim_(x rarr A) ((1 + x^(2))^(1//3)-(1-2x)^(1//4))/(x+x^(2)) is equal to :

Let int dx/(x^(2008)+x) = 1/p In((x^(q))/(1+x^(r)))+C where p,q,r in N and need not be distinct, then the value of ((p+q)/r) equals

If .^(n)P_(r)=x.^(n-1)P_(r-1) , then which of the following is the value of x?

If sum_(r=1)^(n)r^(4)=F(x), then prove that the value of sum_(n=1)^(n)r(n-r)^(3) is (1)/(4)[n^(3)(n+1)^(2)-4F(x)]

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n-1)2f(r/(2n))

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

Let d bet the minimum value of f(x)=5x^(2)-2x+(26)/(5) and f(x) is symmetric about x=r. If sum_(n=1)^(n=1)(1+(n-1)d)r^(n-1) equals,(p)/(q), where p and q are relative prime,then find the value of (3q-p).