Home
Class 11
MATHS
Consider the function f(x)={(1-a^x+x a^x...

Consider the function `f(x)={(1-a^x+x a^x ln a)/(a^xx^2); x<0(2^xa^x-x ln2-x ln a-1)/(x^2); x >0` where `a > 0.` If `g(x)` is continuous at `x=0` then `a=sqrt(2)` (b) `g(0)=1/8(ln2)^2` `a=1/(sqrt(2))` (d) `g(0)=1/2ln2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={(1-a^x+x a^x ln a)/(a^xx^2); x 0 where a > 0. If g(x) is continuous at x=0 then a=sqrt(2) (b) g(0)=1/8(ln2)^2 a=1/(sqrt(2)) (d) g(0)=1/2ln2

If g(x)=(1-a^(x)+xa^(x)log a)/(x^(2)*a^(x)),x 0 (where a >0) then find a and g(0) so that g(x) is continuous at x=0.

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If f(x) f(x) = (log{(1+x)^(1+x)}-x)/(x^(2)), x != 0 , is continuous at x = 0 , then : f(0) =

The function f(x)=((3^(x)-1)^(2))/(sin x*ln(1+x)),x!=0, is continuous at x=0, Then the value of f(0) is

If f(x) {:(=(log (1-2x)-log(1-3x))/x", " x != 0 ),(=a", " x = 0 ):} is continuous at x = 0 , then : a =

If the function f(x)=(log(1+ax)-log(1-bx))/(x) is continuous at x=0, then f(0)=

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is: