Home
Class 12
MATHS
If fogoh(x)=1/(|x|+3) then a) h(x)=x+3 b...

If `fogoh(x)=1/(|x|+3)` then a) `h(x)=x+3` b) f(x)=|x| c)`g(x) =1/x` d) g(x)=x+3

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)

If f(x)={(|x|-3 when x = 1) & g(x)={2-|x| when x = 2 . if h(x)=f(x)+g(x) is discontinuous at exactly one point, then - (a). a=-3, b=0 (b). a=-3, b=-1 (c) a=2, b=1 (d) a=0, b=1

If f(x)={(|x|-3 when x = 1) & g(x)={2-|x| when x = 2 . if h(x)=f(x)+g(x) is discontinuous at exactly one point, then - (a). a=-3, b=0 (b). a=-3, b=-1 (c) a=2, b=1 (d) a=0, b=1

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

find fogoh If the funtion f(x)=x-1 and g(x)=2x-3, h(x)=4x .

If f(x)=2,g(x)=x^(2),h(x)=2x then find ("fogoh")(x)