Home
Class 12
MATHS
The determinant Delta(k)=|(a^2(a+b),a b,...

The determinant `Delta(k)=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))|`is divisible by

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

The determinant |[a^2, a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[ c^2,c^2-(a-b)^2,ab]| is divisible by- a. a+b+c b. (a+b)(b+c)(c+a) c. a^2b^2c^2 d. (a-b)(b-c)(c-a)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |(ka,k^(2)+a^(2),1),(kb,k^(2)+b^(2),1),(kc,k^(2)+c^(2),1)| is a)k(a+b)(b+c)(c+a) b)kabc (a^(2)+b^(2)+c^(2)) c)k(a-b) (b -c) (c - a) d)k(a + b - c) (b + c - a) (c + a - b)

If Delta=|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=k(a-b)(b-c)(c-a) then k=

The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1| is k(a+b)(b+c)(c+a) k a b c(a^2+b^(f2)+c^2) k(a-b)(b-c)(c-a) k(a+b-c)(b+c-a)(c+a-b)