Home
Class 12
MATHS
F(x)=x^4-3x^3-7x^2-10x-25 G(x)=x^4-4x^3...

`F(x)=x^4-3x^3-7x^2-10x-25` `G(x)=x^4-4x^3+x^2-27x-15` Fidn the number of values o x for which `f(x)=g(x)=0`

Text Solution

Verified by Experts

`f(x) = g(x) = 0`
`=>f(x) - g(x) = 0`
`=>x^4-3x^3-7x^2-10x-25-x^4+4x^3-x^2+27x+15 = 0`
`=>x^3-8x^2+17x-10 = 0`
Now, if we put `x = 5` in the above polynomial,
`5^3-8(5)^2+17(5)- 10 = 0`
`=>125-200+85-10 = 0`
`=> 0 = 0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

" 2" f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

f(x)=3x^4+2x^3-(x^2)/3-x/9+2/(27),\ g(x)=\ x+2/3 find the value of f(x)-g(x).

f(x)=3x^(4)+17x^(3)+9x^(2)-7x-10;g(x)=x+

f(x)=x^(3)+4x^(2)-3x+10,g(x)=x+4

If f (x)=((x-1) (x-2))/((x-3)(x-4)), then number of local extemas for g (x), where g (x) =f (|x|):

f(x)=3x^4+17 x^3+9x^2-7x-10 ;g(x)=x+5 find the remainder when f(x) is divided with g(x)

Suppose that the function f(x) and g(x) satisfy the system of equations f(x)+3g(x)=x^(2)+x+6 and 2f(x)+4g(x)=2x^(2)+4 for every x. The value of x for which f(x)=g(x) can be equal to

Suppose that the function f(x) and g(x) satisfy the system of equations f(x)+3g(x)=x^(2)+x+6 and 2f(x)+4g(x)=2x^(2)+4 for every x. The value of x for which f(x)=g(x) can be equal to