Home
Class 11
MATHS
Let A(6,7), B(2,3) and C(-2,1) be vertic...

Let `A(6,7), B(2,3)` and `C(-2,1)` be vertices of a triangle. The point `P` in the interior of `DeltaABC` such that `DeltaPBC` is an equilateral triangle is (A) `(-sqrt3, 2+2sqrt(3)) (B) (-sqrt(3), 2-2sqrt(3)) (C) (sqrt(3), 2-2sqrt(3)) (D) (sqrt(3),2+2sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

In an equilateral triangle r:R : r_(1) is (A) 1:1:1 (B) 1:sqrt(2):3 (C) 1:2:3 (D) 2:sqrt(3):sqrt(3)

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

sqrt(6-4sqrt(3)+sqrt(16-8sqrt(3))) is equal to 1-sqrt(3) b.sqrt(3)-1 c.2(2-sqrt(3)) d.2(2+sqrt(3))

The height of an equilateral triangle is sqrt(6)\ c mdot Its area is (a) 3sqrt(3)\ c m^2 (b) 2sqrt(3)\ c m^2 (c) 2sqrt(2)\ c m^2 (d) 6sqrt(2)\ c m^2

The simplest rationalising factor of 2sqrt(5)-sqrt(3) is 2sqrt(5)+3( b) 2sqrt(5)+sqrt(3)(c)sqrt(5)+sqrt(3) (d) sqrt(5)-sqrt(3)

The simplest rationalising factor of 2sqrt(5)-sqrt(3) is (a) 2sqrt(5)+\ 3 (b) 2sqrt(5)+sqrt(3) (c) sqrt(5)+sqrt(3)\ \ (d) sqrt(5)-sqrt(3)