Home
Class 11
PHYSICS
int (dt)/(sqrt(2at - t^(2))) = a^(2) sin...

`int (dt)/(sqrt(2at - t^(2))) = a^(2) sin ^(-1)[[1)/(a) - 1]`The value of x is

Promotional Banner

Similar Questions

Explore conceptually related problems

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

int(dt)/(sqrt(3t-2t^(2)))

int(dt)/(sqrt(3t-2t^(2)))

int(dt)/( sqrt(t-1))

int(dt)/(t+sqrt(a^(2)-t^(2)))

int(dt)/(sqrt(3t-2t^2))

int(dt)/( sqrt(1-t)-t)

If equation int (dt)/(sqrt(3a - 2t^(2))) = a^(x) sin ^(-1) ((r^(2))/(a^(2)) - 1) , the value of x is

" (a) "int(dt)/(sqrt(1-t^(2)))