Home
Class 12
MATHS
If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2...

If `A=[(a+ib,c+id),(-c+id,a-ib)]` and `a^(2)+b^(2)+c^(2)+d^(2)=1`, then `A^(-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(a+ib,c+id),(-c+id,a-ib)], a^(2)+b^(2)+c^(2)+d^(2) =1 , then find inverse of A.

Find the adjoint and inverse of each of the following matrices : A = [(a+ib, c +id),(-c + id,a - ib)] where a^(2) + b^(2) + c^(2) + d^(2) = 1

IF A=[{:(a+ib,c+id),(-c+id,a-ib):}] a^2+b^2+c^2+d^2=1 , then find the inverse of A.

Evaluate: |(a+ib,c+id),(-c+id,a-id)|

Evaluate det [(a+ib, c +id),(-c+id, a-ib)]

If x -iy = sqrt([(a - ib)/(c-id)]) , then (x^(2) + y^(2))^(2) =

Evaluate det[[a+ib,c+id-c+id,a-ib]]

If a+ib=c+id , then

If (a+ib)/(c+id)=x+iy, prove that (a-ib)/(c-id)=x-iy and (a^(2)+b^(2))/(c^(2)+d^(2))=x^(2)+y^(2)

If a + ib = c + id , then