Home
Class 11
MATHS
The value of tan^2alpha - tan^2beta -1/...

The value of `tan^2alpha - tan^2beta -1/2 sin(alpha-beta) sec^2alpha sec^2beta` is zero if

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan 2alpha = cot 2beta , then sec(alpha + beta) =

What is (1+tan alpha tan beta)^2+(tan alpha-tan beta)^2-sec^2 alpha" "sec^2beta equal to?

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If sin beta=sin(2alpha+beta) , then tan(alpha+beta)-2tan alpha is

Find the value of (sin (alpha + beta))/(sin (alpha - beta)), "given that" tan alpha = 2 tan beta.

If sin(alpha + beta) = 1 , sin(alpha - beta) = 1/2 , then : tan(alpha + 2beta)tan(2alpha + beta) is equal to :

If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2beta) then the value of (2 sin^2 beta - sin^2 alpha ) where beta!= n pi is

If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2beta) then the value of (2 sin^2 beta - sin^2 alpha ) where beta!= n pi is