Home
Class 12
MATHS
Let In=int tan^n x dx, (n>1). If I4+I6...

Let `I_n=int tan^n x dx, (n>1)`. If `I_4+I_6=a tan^5 x + bx^5 + C`, Where `C` is a constant of integration, then the ordered pair `(a,b)` is equal to :

A

`(-(1)/(5),0)`

B

`(-(1)/(5),1)`

C

`((1)/(5),0)`

D

`((1)/(5),-1)`

Text Solution

Verified by Experts

`I_(n)=int tan^(n)x dx`
` I_(4)+I_(6)=int(tan^(4)x+tan^(6)x)dx`
`=int tan^(4)xsec^(2)xdx`
`=(1)/(5) tan^(5)x+C`
` :. atan^(5)x+bx^(5)+C=(1)/(5)tan^(5)x+C ("given")`
`a=(1)/(5),b=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n)=int tan^(n)x dx, (n gt 1) . If I_(4 ) +I_(6)=a tan^(5)x+bx^(5)+C , where C is a constant of integration, then the ordered pair (a, b) is equal to :

Let I_(n)=int tan^(n)xdx,(n>1) If I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, where C is a a constant of integration,then the ordered pair (a,b) is equal to : (1)((5)/(1),-1)(2)(-(1)/(5,0))(3)(-(1)/(5),1)(4)((1)/(5),0)

"Let " I_(n)=int tan^(n)x dx,(n gt 1). I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, " where C is a constant of integration, then the ordered pair (a,b) is equal to "

LetI _(n)=int tan^(n)xdx,(n>1). If I_(4)+I_(6)=a tan^(5)x+bx^(5)+c where c is a constant of integration then thee ordered pair (a,b) is

Let I_(n)=inttan^(n)xdx , n gt 1 . I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration , then the ordered pair ( a , b) is equal to

Let I_(n)=inttan^(n)xdx , n gt 1 . I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration , then the ordered pair ( a , b) is equal to

Let I_(n)=inttan^(n)xdx,(ngt1).I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration, then the ordered pair (a,b) is equal to

Let I_(n)=inttan^nxdx,(ngt1)*I_(4)+I_(6)=atan^5x+bx^5+c , where c is constant of integration, then the ordered pair (a,b) is equal to

What is int sec^(n)x tan xdx equal to ? Where 'c' is a constant of integration