Home
Class 12
MATHS
If x is real and a and bare unequal, the...

If x is real and `a and b`are unequal, then prove that the expression `(x^2 + bx + c)/(x^2+bx+c)` can take any value when `c le 0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R, the expression (x^(2)+2x+c)/(x^(2)+4x+3c) can take all real values if c in

the minimum value of the quadratic expression x^2+2bx + c is

If x is real then (x^(2)-x+c)/(x^(2)+x+2c) can take all real values if

Evaluate lim_(x rarr 1) (ax^2 + bx + c)/(cx^2 + bx + a) , a + b + c ne 0

If roots of equation x^2-2c x+a b=0 are real and unequal, then prove that the roots of x^2-2(a+b)x+a^2+b^2+2c^2=0 will be imaginary.

If roots of equation x^2+2c x+a b=0 are real and unequal, then prove that the roots of x^2-2(a+b)x+a^2+b^2+2c^2=0 will be imaginary.

If roots of equation x^2-2c x+a b=0 are real and unequal, then prove that the roots of x^2-2(a+b)x+a^2+b^2+2c^2=0 will be imaginary.

If roots of equation x^3-2c x+a b=0 are real and unequal, then prove that the roots of x^2-2(a+b)x+a^2+b^2+2c^2=0 will be imaginary.

The quadratic expression ax^(2)+bx+c>0 AA x in R ,then