Home
Class 12
MATHS
If a,b,c, be the pth, qth and rth terms ...

If a,b,c, be the pth, qth and rth terms respectivley of a G.P., then the equation `a^q b^r c^p x^2 +pqrx+a^r b^-p c^q=0` has (A) both roots zero (B) at least one root zero (C) no root zero (D) both roots unilty

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c be the pth , qth and rth terms of an A.P., then p(b-c) + q(c-a) + r(a-b) equals to :

If a, b, c, be respectively the pth, qth and rth terms of a G.P., prove that a^(q-r).b^(r-p).c^(p-q) = 1

If a,b,c are pth, qth rth terms respectivelyy of a G.P then |(loga, p, 1),(logb, q, 1),(logc, r, 1)|=

If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(bc,p,1),(ca,q,1),(ab,r,1)|= (A) 0 (B) 1 (C) -1 (D) none of these

If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(bc,p,1),(ca,q,1),(ab,r,1)|= (A) 0 (B) 1 (C) -1 (D) none of these

If a,b,c are respectively the pth ,qth and rth terms of a G.P. then (q-r) log a +(r-p) log b+(p-q) log c=