Home
Class 12
MATHS
If (a^4-2 a^2b^2+b^4)^(x-1)=(a-b)^3(a+b)...

If `(a^4-2 a^2b^2+b^4)^(x-1)=(a-b)^3(a+b)^-2` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a^(4)-2a^(2)b^(2)+b^(4))^(x-1)=(a-b)^(3)(a+b)^(-2) then x=

If a!=(+-)b and a+b!=1 then find the value of x satisfying the equation (a^(4)-2a^(2)b^(2)+b^(4))^(x-1)=(a-b)^(2x)(a+b)^(-2)

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)

The value of the determinant (a_1-b_1)^2(a_1- b_2)^2(a_1-b_3)^2(a_1-b_4)^2(a_2-b_1)^2(a_2-b_2)^2(a_2-b_3)^2(a_2- b_4)^2(a_3-b_1)^2(a_3-b_2)^2(a_3-b_3)^2(a_3-b_4)^2(a_4-b_1)^2(a_4-b_2)^2(a_4-b_3)^2(a_4-b_4)^2 is dependant on a_i , i=1,2,3,4 dependant on b_i , i=1,2,3,4 dependant on a_(i j), b_i i=1,2,3,4

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) 4x ^(2) + 4x +1

If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x).b^(y), find x + y.

If x^(3) +3/(x)= 4(a^3 + b^3) and 3x+ 1/(x^3) = 4(a^3 - b^3) , then 4(a^2-b^2)=?

Add the following expressions: (i) x^3-2x^2y+3x y^2-y^3,\ 2x^3-5x y^2+3x^2y-4y^3 (ii) a^2-2a^3b+3a b^3+4a^2b^2+3b^4,-2a^4-5a b^3+7a^3b-6a^2b^2+b^4