Home
Class 11
MATHS
Minimum value of (sec^4alpha)/(tan^2beta...

Minimum value of `(sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha),` where `alpha!=pi/2,beta!=pi/2`,0

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of (sec^(4)alpha)/(tan^(2)beta)+(sec^(4)beta)/(tan^(2)alpha), where alpha!=(pi)/(2),beta!=(pi)/(2),0

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)

If x sec alpha+y tan alpha=x sec beta+y tan beta=a , then sec alpha*sec beta=

The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if

If sec alpha is the average of sec(alpha-2 beta) and sec(alpha+2 beta) then the value of (2sin^(2)beta-sin^(2)alpha) where beta!=n pi is

If alpha and beta are the roots of the equation x^2-4x + 1=0(alpha > beta) then find the value of f(alpha,beta)=(beta^3)/2csc^2(1/2tan^(- 1)(beta/alpha))+(alpha^3)/2sec^2(1/2tan^- 1(alpha/beta))