Home
Class 12
MATHS
If siny=xsin(a+y), prove that (dy)/(dx)=...

If `siny=xsin(a+y),` prove that `(dy)/(dx)=(sin^2(a+y))/(sina)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=xsin(a+y) , prove that (dy)/(dx)=(sin ^ 2(a+y))/(sin(a+y)-y\ cos\ (a+y)) .

If y=xsin(a+y) , prove that (dy)/(dx)=(s in^2(a+y))/(sin(a+y)-y cos\ (a+y))

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If siny=xsin(a+y) , then prove that (dy)/(dx)=(sin^(2)(a+y))/sina, a ne npi .

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If sin y = x sin(a+y), than prove that dy/dx=(sin^2(a+y))/sina

If y=xsin(a+y),p rov et h a t(dy)/(dx)=(sin^2(a+y))/(sin(a+y)-ycos(a+y))dot

If y = x sin(a+y), prove that dy/dx = (sin^2(a+y))/(sin(a+y)-ycos(a+y))