Home
Class 11
MATHS
Let |a(i+1) + 1| = |a+i| AA i in {0, 1, ...

Let `|a_(i+1) + 1| = |a+i| AA i in {0, 1, 2........}`. If `a_0 = 0` then mean of `a_1, a_2, ...a_n` is less than or equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

Let (1+x^2)^2 (1+x)^n= A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2,........ are in A.P. then the value of n is

Let a_1=0 and a_1,a_2,a_3 …. , a_n be real numbers such that |a_i|=|a_(i-1) + 1| for all I then the A.M. Of the number a_1,a_2 ,a_3 …., a_n has the value A where : (a) A lt -1/2 (b) A lt -1 (c) A ge -1/2 (d) A=-2

If (1 - x + x^2)^n = a_0 + a_1 x + a_2x^2 + ..... + a_(2n)x^(2n) then a_0 + a_2 + a_4 + ... + a_(2n) equals

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is