Home
Class 12
MATHS
What is the value of the sum sum(n=2)^(1...

What is the value of the sum `sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n= 1)^(13) (i^(n) + i^(n + 1)) , where i=sqrt(-1) is

The value of the sum sum_(n=1)^13(i^n+i^(n+1)) , where i= sqrt(-1) , equals

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of sum sum_(n=1)^(13)(i^n+i^(n+1)) ,where i=sqrt(-1) equals

The value of the sums sum_(n=1)^(13)(i^(n)+i^(n+1)) where i=sqrt(-)1 is : (a) i(b)i-1(c)-i(d)

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals