Home
Class 12
MATHS
The function f(x)=e^(x)+x, being differe...

The function `f(x)=e^(x)+x,` being differentiable and one- to -one, has a differentiable inverse `f^(-1)(x).` The value of `(x)/(dx)(f^(-1)at f(log2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=e^(x)+x, being differentiable and one-to-one,has a differentiable inverse f^(-1)(x) .The value of (d)/(dx)(f^(-1)) at the point f(log2) is (a) (1)/(1n2) (b) (1)/(3)( c) (1)/(4) (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is (a) 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is (a) 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is (a) 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

If adifferentiabl e function f(x)=e^(x)+2x is given,then equal to (d)/(dx)(f^(-1)(x)) at x=f(ln3) is equal to

If f(x)=x+1, then write the value of (d)/(dx)(fof)(x)

If f(x)=|x|+|x-1|, write the value of (d)/(dx)f(f(x))