Home
Class 10
MATHS
If A=((costheta, sintheta), (-sintheta, ...

If `A=((costheta, sintheta), (-sintheta, costheta))` prove that `AA^(T)=I`

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    SURA PUBLICATION|Exercise EXECRISE 3.19|19 Videos
  • ALGEBRA

    SURA PUBLICATION|Exercise Unit Exercise-3|23 Videos
  • ALGEBRA

    SURA PUBLICATION|Exercise EXECRISE 3.17|11 Videos
  • COMMON HALFYEARLY EXAMINATION-2019

    SURA PUBLICATION|Exercise Part-IV|3 Videos

Similar Questions

Explore conceptually related problems

costheta -sintheta -cottheta +1=0

If A = [(costheta,-sintheta),(sintheta,costheta)] , then the matrix A^(-50) , when theta = (pi)/(12) , is equal to

(sintheta+sin2theta)/(1+costheta+cos2theta)

If costheta[(costheata, sintheta), (-sintheta, costheta)]+sintheta[(x, -costheta), (costheta, x)]=I_(2) . Find x.

(costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

A=[(costheta,sintheta),(-sintheta,costheta)] and A (adj A) = [(k,0),(0,k)] , then =k

If A=[{:(costheta,sintheta),(sintheta,-costheta):}] , B=[{:(1,0),(-1,1):}] , C=ABA^(T) , then A^(T)C^(n)A equals to (n in I^(+))

If A=((costheta, 0), (0, costheta)), B=((sintheta, 0), (0, sintheta)] then show that A^(2)+B^(2)=I .