Home
Class 12
PHYSICS
Match the following {:(,"Currents","r....

Match the following
`{:(,"Currents","r.m.s. values"),((1),x_(0) sin omega t,(i)" "x),((2),x_(0) sin omega t cos omega t,(ii)" "x_(0)/sqrt(2)),((3),x_(0) sin omega t+x_(0) cos omega t,(iii)" "x_(0)/((2sqrt(2)))):}`

A

1. (i), 2. (ii), 3. (iii)

B

1. (ii), 2. (iii), 3. (i)

C

1. (i), 2. (iii), 3. (ii)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the given currents with their respective r.m.s. values, we will analyze each equation step by step. ### Step-by-Step Solution: 1. **Identify the first current equation:** \[ x = x_0 \sin(\omega t) \] - The peak value (amplitude) here is \( x_0 \). - The formula for the r.m.s. value is given by: \[ \text{r.m.s. value} = \frac{x_0}{\sqrt{2}} \] - Therefore, the r.m.s. value for this equation is: \[ \frac{x_0}{\sqrt{2}} \] - This matches with option (ii). 2. **Identify the second current equation:** \[ x = x_0 \sin(\omega t) \cos(\omega t) \] - To find the peak value, we can use the identity: \[ \sin(\omega t) \cos(\omega t) = \frac{1}{2} \sin(2\omega t) \] - Thus, the peak value becomes: \[ x_0 \cdot \frac{1}{2} = \frac{x_0}{2} \] - The r.m.s. value is then: \[ \text{r.m.s. value} = \frac{\frac{x_0}{2}}{\sqrt{2}} = \frac{x_0}{2\sqrt{2}} \] - This matches with option (iii). 3. **Identify the third current equation:** \[ x = x_0 \sin(\omega t) + x_0 \cos(\omega t) \] - The r.m.s. value of the sum of two sinusoidal functions can be calculated using: \[ \text{r.m.s. value} = \sqrt{(\text{r.m.s. of } \sin)^2 + (\text{r.m.s. of } \cos)^2} \] - The r.m.s. value for both \( x_0 \sin(\omega t) \) and \( x_0 \cos(\omega t) \) is: \[ \frac{x_0}{\sqrt{2}} \] - Therefore, we have: \[ \text{r.m.s. value} = \sqrt{\left(\frac{x_0}{\sqrt{2}}\right)^2 + \left(\frac{x_0}{\sqrt{2}}\right)^2} = \sqrt{\frac{x_0^2}{2} + \frac{x_0^2}{2}} = \sqrt{x_0^2} = x_0 \] - This matches with option (i). ### Final Matching: - **1 matches with (ii)**: \( x_0 \sin(\omega t) \) → \( \frac{x_0}{\sqrt{2}} \) - **2 matches with (iii)**: \( x_0 \sin(\omega t) \cos(\omega t) \) → \( \frac{x_0}{2\sqrt{2}} \) - **3 matches with (i)**: \( x_0 \sin(\omega t) + x_0 \cos(\omega t) \) → \( x_0 \) ### Summary of Matches: - 1 → (ii) - 2 → (iii) - 3 → (i)
Promotional Banner

Topper's Solved these Questions

  • ALTERNATING CURRENT

    ERRORLESS |Exercise SET|15 Videos
  • ATOMIC AND NUCLEAR PHYSICS

    ERRORLESS |Exercise S ET|1 Videos

Similar Questions

Explore conceptually related problems

If i_(1) = i_(0) sin (omega t), i_(2) = i_(0_(2)) sin (omega t + phi) , then i_(3) =

If i_(1) = 3 sin omega t and i_(2) =6 cos omega t , then i_(3) is

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is

Evalueta int_(0)^(T)E_(0)I_(0)sin omega t sin(omegat+phi)dt

The r.m.s. value of I = I_(1) sin omega t + I_(2) cos omega t is

The r.m.s. value of I = I_(1) sin omega t + I_(2) cos omega t is

The ratio of amplitudes of following SHM is x_(1) = A sin omega t and x_(2) = A sin omega t + A cos omega t

Integrate the following w.r.t.x. x sin^(2)x

Following are equations of four waves : (i) y_(1) = a sin omega ( t - (x)/(v)) (ii) y_(2) = a cos omega ( t + (x)/(v)) (iii) z_(1) = a sin omega ( t - (x)/(v)) (iv) z_(1) = a cos omega ( t + (x)/(v)) Which of the following statements are correct ?