Home
Class 10
MATHS
sqrt((324)/(49))xxsqrt((676)/(169))xx(12...

`sqrt((324)/(49))xxsqrt((676)/(169))xx(126)/sqrt(81) = x`

Text Solution

Verified by Experts

`x=sqrt(324/49)*sqrt(676/169)*(126/sqrt81)`
`x=18/7*26/13*126/9`
`x=72`.
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((324)/(81))+sqrt((324)/(81))=?

Find the value of x in the equation ((sqrt(324))/(sqrt(49)))((sqrt(676))/(sqrt(169)))((126)/(sqrt(81)))=x

(sqrt(2498)xxsqrt(625))/(sqrt(99))=?

3sqrt(13824)xxsqrt(?)=864

sqrt((81)/(64)sqrt((81)/(64))sqrt((81)/(61))sqrt((81)/(64))...oo)=

Solve the following :- (i) sqrt(sqrt(2)/(3))xxsqrt((9)/(2)) (ii) sqrt((5)/(6))xxsqrt((3)/(5)) (iii) sqrt((3)/(5))divsqrt((27)/(125)) (iv) sqrt((4)/(9))divsqrt((64)/(81))

Solve the following :- (i) sqrt(sqrt(2)/(3))xxsqrt((9)/(2)) (ii) sqrt((5)/(6))xxsqrt((3)/(5)) (iii) sqrt((3)/(5))divsqrt((27)/(125)) (iv) sqrt((4)/(9))divsqrt((64)/(81))