Home
Class 12
MATHS
If f(x)=1/x^2int4^x(4t^2-2f'(t)) dt, the...

If `f(x)=1/x^2int_4^x(4t^2-2f'(t))` dt, then f'(4) is equal to:

Text Solution

Verified by Experts

`f(x)=1/x^2int(4t^2-2f'(t))dt`
`f(4)-1/16int_4^4 ((4t^2-2f'(t))dt`
`f(4)=1/16`
`f(x)=1/x^2int_4^x(4t^2-2f'(t))dt`
`=1/x^2[4t^3/3-2f(t)]_4^x`
`=1/x^2[(4/3x^2-2f(x)]-[256/3-2f(t)]` `f(x)=4/3x-2/x^2f(x)-256/(3x^2)+2/x^2f(x)`
differentiate with respect to x
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find 9f'(4)

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find the value of 9f'(4)

If F(x) =(1)/(x^(2))int_(4)^(x) [4t^(2)-2F'(t)]dt then F'(4) equals

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to