Home
Class 12
MATHS
If x+y=1,show that D^n(x^ny^n)=n![y^n-...

If `x+y=1`,show that `D^n(x^ny^n)=n![y^n-(nC_1)^2 y^(n-1) x+(nC_2)^2 y^(n-2) x^2+.....+(-1)^n x^n]`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=

x^n - y^n = (x-y) (x^(n-1) + x^(n-2) y + … + xy^(n-2) + y^(n-1)) , x,y in R

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

(x^(2^n)-y^(2^n))/(x^(2^(n-1))+y^(2^(n-1)))=

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)

(n+2)nC_0(2^(n+1))-(n+1)nC_1(2^(n))+(n)nC_2(2^(n-1))-.... is equal to

If y=x^(2)e^(x) ,show that y_(n)=(1)/(2)n(n-1)y_(2)-n(n-2)y_(1)+(1)/(2)(n-1)(n-2)}

If y=e^(a sin^(-1)x) then show that (1-x^(2))y_(n+2)-(2n+1)xy_(n+1)-(n^(2)+a^(2))y_(n)=0