Home
Class 12
PHYSICS
If vec(F) = (5hat(i)+2hat(j) - 4hat(k))N...

If `vec(F) = (5hat(i)+2hat(j) - 4hat(k))N`, the magnitude of force is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

A force vec(F) = (4hat(i) - 3hat(j) - 5hat(k)) N moves a body for (3hat(i) + 6hat(j) + 3hat(k)) m to (ahat(i) - 8hat(j) + 5hat(k)) m. If the work done by the force is 8j, the value of .a. is

If vec(F) = (60 hat(i) + 15hat(j) - 3hat(k)) and vec(v) = (2hat(i) - 4hat(j) + 5hat(k))m//s , then instantaneous power is :

If vec(F) = 3hat(i) + 4hat(j) + 5hat(k) and vec(S) = 6hat(i) + 2hat(j) + 5hat(k) , find the work done by the force.

Consider two vector vec(F_1)=2hat(j)+5hat(k)and vec(F_2)=3hat(j)+4hat(k). The magnitude of the scalar product of these vector is

Consider two vector vec(F_1)=2hat(j)+5hat(k)and vec(F_2)=3hat(j)+4hat(k). The magnitude of the scalar product of these vector is

Force vec(F ) = (60 hat(i) +50 hat(j)-3hat(k))N is applied on a particle , the value of velocity is vec(v) =(2hat(i)+4hat(j)+5hat(k)) m/s , then power will be ……. W.

A force vec(F) = (2hat(i) - 3hat(j) +7hat(k)) N is applied on a particle which displaces it by vec(S) = (4hat(i)+5hat(j) +hat(k)) . Find the work done on the particle .