Home
Class 12
PHYSICS
A particle is released from the origin w...

A particle is released from the origin with a velocity `vhate(i)`. The electric field in the region is `Ehate(i)` and magnetic field is `Bhat(k)`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle of charge q and mass m released from origin with velocity vec(v) = v_(0) hat(i) into a region of uniform electric and magnetic fields parallel to y-axis. i.e., vec(E) = E_(0) hat(j) and vec(B) = B_(0) hat(j) . Find out the position of the particle as a functions of time Strategy : Here vec(E) || vec(B) The electric field accelerates the particle in y-direction i.e., component of velocity goes on increasing with acceleration a_(y) = (F_(y))/(m) = (F_(e))/(m) = (qE_(0))/(m) The magnetic field rotates the particle in a circle in x-z plane (perpendicular to magnetic field) The resultant path of the particle is a helix with increasing pitch. Velocity of the particle at time t would be vec(v) (t) = v_(x) hat(i) + v_(y) hat(j) + v_(z) hat(k)

A particle of charge q and mass m released from origin with velocity vec(v) = v_(0) hat(i) into a region of uniform electric and magnetic fields parallel to y-axis. i.e., vec(E) = E_(0) hat(j) and vec(B) = B_(0) hat(j) . Find out the position of the particle as a functions of time Strategy : Here vec(E) || vec(B) The electric field accelerates the particle in y-direction i.e., component of velocity goes on increasing with acceleration a_(y) = (F_(y))/(m) = (F_(e))/(m) = (qE_(0))/(m) The magnetic field rotates the particle in a circle in x-z plane (perpendicular to magnetic field) The resultant path of the particle is a helix with increasing pitch. Velocity of the particle at time t would be vec(v) (t) = v_(x) hat(i) + v_(y) hat(j) + v_(z) hat(k)

A particle having mass m and charge q is released from the origin in a region in which electric field and magnetic field are ginen by B=+B_(0)hatj and vecE=+E_(0)hati . Find the speed of the particle as a function of its X -coordinate.

In a region if electric field is 6V/m then magnetic field will be?

A particle having mass m and charge q is released from the origin in a region in which electric field and magnetic field are given by vecB =- B_0vecJ and vecE - E_0 vecK. Find the speed of the particle as a function of its z-coordinate.

A particle having mass m and charge q is released from the origin in a region in which electric field and magnetic field are given by vecB =- B_0vecJ and vecE - E_0 vecK. Find the speed of the particle as a function of its z-coordinate.

A particle having mass m and charge q is released from the origin in a region in which electric field and magnetic field are given by vecB =- B_0vecJ and vecE - E_0 vecK. Find the speed of the particle as a function of its z-coordinate.

A particle having charge q moves with a velocity v through a region in which both an electric field vecE and a magnetic field B are present. The force on the particle is

A particle having charge q moves with a velocity v through a region in which both an electric field vecE and a magnetic field B are present. The force on the particle is