Home
Class 11
MATHS
Prove 2sin^(-1)(3/5)+sin^(-1)(7/25)=pi...

Prove `2sin^(-1)(3/5)+sin^(-1)(7/25)=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "sin"^(-1)(4)/(5) +"sin"^(-1)(5)/(13) +"sin"^(-1)(16)/(65)=(pi)/(2) .

Prove that sin^(-1)((4)/(5)) +sin^(-1)((5)/(13)) +sin^(-1)((16)/(65)) =(pi)/(2)

Prove that: 2sin^(-1)(3/5)=tan^(-1)((24)/7)

Prove that: ,,2sin^(-1)(3)/(5)=tan^(-1)(24)/(7)

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Prove that Sin^(-1)(4/5)+Sin^(-1) 7/25 = Sin^(-1) 117/125 .

Prove that sin^(-1)""(3)/(5)+sin^(-1)""(4)/(5)=(pi)/(2)

Prove that : 2 sin^(-1)( 3/5) = tan^(-1)( 24/7)