Home
Class 12
MATHS
If log sqrtx=log root 3(y) =log root5(z)...

If `log sqrtx=log root 3(y) =log root5(z)` then `y z =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log x = (log y) / (2) = (log z) / (5), thtenx ^ (4) y ^ (3) z ^ (- 2) =

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If 2log(x-z)-log(x-2y+z)=log(x+z), then x,y and z are in

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3