Home
Class 12
MATHS
Let m and M be the minimum and maximum v...

Let m and M be the minimum and maximum values of `2sin^2 theta+ 4 cos (theta + alpha) sin theta sin alpha+ cos2(theta+ alpha)` where `0 <= theta <= pi/4 and 0 <= alpha <= pi/4` then (m+M) equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)

cos ( theta + alpha)* cos ( theta - alpha) + sin ( theta + alpha) * sin (theta - alpha )=

The minimum and maximum values of expression y=cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha))

Let f(theta, alpha)= 2sin^2theta+4cos(theta+alpha)sintheta.sinalpha+cos2(theta+alpha) The value of f(pi/3,pi/4) is

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.

If sin^(2)(theta-alpha)cos alpha=cos^(2)(theta-alpha)sin alpha=m sin alpha cos alpha, then

Eliminate theta from lambda cos 2theta = cos(theta + alpha) and lambda sin 2theta = 2sin(theta + alpha)

Eliminate theta from lambda cos 2theta = cos(theta + alpha) and lambda sin 2theta = 2sin(theta + alpha)

If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta + alpha) + 2 tan alpha is