Home
Class 12
MATHS
The number of real values of x satisfyin...

The number of real values of x satisfying the equation `log_5[(2 + sqrt5)^x - (sqrt 5 – 2)^x] = 1/2-3 log_(1/5) 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation.log_(5)(5^(x)-1)*log_(25)(5^(x+1)-5)=1 is :

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2

Value of x satisfying the equation (log_(5)(x))^(2)+log_(5x)((5)/(x))=1 are