Home
Class 12
MATHS
Prove that tan^(-1)(2/11)+tan^(-1)(7/24...

Prove that `tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)`

Text Solution

Verified by Experts

LHS
`tan^(-1)(2/11)+tan^(-1)(7/24)`
`tan^(-1)(((2/11)+(7/24))/(1-(2/11)(7/24)))`
`tan^(-1)((2*24+7*11)/(11*24-14))`
`tan^(-1)(125/250)`
`tan^(-1)(1/2)`
RHS.
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan^(-1)(2/11) + tan^(-1)( 7/24) =tan^(-1) (1/2)

Prove thate tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan^(-1)""(2)/(11)+tan^(-1)""(7)/(24)=(1)/(2)cos^(-1)""(3)/(5)

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)