Home
Class 12
MATHS
If log10(a b^3)=log10(a^2b)=1, then the ...

If `log_10(a b^3)=log_10(a^2b)=1,` then the value of `log_10(ab)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10) 3=1.4771 and log_(10) 7=0.8451, then the value of log_(10)(23 1/3) is equal to a. 0. 368 b. 1. 368 c. 1. 356 d. 1. 477

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

If "log"_(10)2=0.3010and"log"_(10)3=0.4771 , then the value of "log"_(100)(72) is equal to

If log_(10) a= p and log_(10) b = q, then what is log_(10) (a^(p)b^(q)) equal to ?

If log_10 2 = 0.3010 is given, then log_2 10 is equal to :